equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  







Coeficiente de dilatação térmica 

Equação genérica: materiais isotrópicos

Nos materiais isotrópicos pode-se calcular a variação de comprimento, e consequentemente de área e volume, em função da variação de temperatura:


equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



/

  • variação do comprimento;
  • coeficiente de dilatação linear;
  • comprimento inicial;
  • variação de temperatura.





Transformações reversíveis

A entropia é um conceito essencial ao estudo das máquinas térmicas.

A ideia de entropia, uma grandeza física que encontra sua definição dentro da área da termodinâmica,[Nota 4] surgiu no seguimento de uma função criada por Clausius[4] a partir de um processo cíclico reversível. Sendo Q o calor trocado entre o sistema e sua vizinhança, e T a temperatura absoluta do sistema, em todo processo reversível a integral de curva de  só depende dos estados inicial e final, sendo independente do caminho seguido. Portanto deve existir uma função de estado do sistema, S = f (P, V, T), chamada de entropia, cuja variação em um processo reversível entre os estados inicial e final é:[Nota 5]


equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/
/
, sendo Q reversível

A entropia física, em sua forma clássica é dada por:

, desde que o calor seja trocado de forma reversível

ou, quando o processo é isotérmico:


equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



/

onde S é a entropia,  a quantidade de calor trocado e T a temperatura em Kelvin.

O significado desta equação pode ser descrito, em linguagem corrente, da seguinte forma:

Em processos reversíveis como o descrito, quando um sistema termodinâmico passa do estado 1 ao estado 2, a variação em sua entropia é igual à variação da quantidade de calor trocada (de forma reversível) dividido pela temperatura.





Interpretação estatística

Em 1877Ludwig Boltzmann visualizou um método probabilístico para medir a entropia de um determinado número de partículas de um gás ideal, na qual ele definiu entropia como proporcional ao logaritmo neperiano do número de microestados que um gás pode ocupar:



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



Onde S é a entropia, k é a constante de Boltzmann e Ω é o número de microestados possíveis para o sistema.

O trabalho de Boltzmann consistiu em encontrar uma forma de obter a equação entrópica fundamental S a partir de um tratamento matemático-probabilístico[Nota 10] facilmente aplicável aos sistemas em questão. Ao fazê-lo, conectou o todo poderoso formalismo termodinâmico associado à equação fundamental a um método de tratamento probabilístico simples que exige apenas considerações físicas primárias sobre o sistema em análise, obtendo, a partir de considerações básicas, todo o comportamento termodinâmico do sistema. A equação de Boltzman mostra-se muito importante para o estudo termodinâmico de tais sistemas, e reconhecida como tal pelo próprio autor, encontra-se gravada em sua lápide.[






equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/
/



Definição de Entalpia









Comentários

Postagens mais visitadas deste blog